	Talbot Primary School Progression in Calculation Reception - Year 6 2020	\vdots

Introduction

The aim of this document is to show how each of the four operations (addition, subtraction, multiplication, division) are taught at Talbot. It can be used to support any learning you may choose to focus on with your child at home and a paper copy can be requested from the office.

Strategies are introduced at three different stages (The Early Years Foundation Stage, Key Stage 1 and Key Stage 2) however, children will continue to use and extend strategies that they learnt at a younger age as they become older and start working with larger numbers.

Concrete, Pictorial, Abstract

At Talbot, we follow the 'concrete, pictorial, abstract' model when introducing a new mathematical concept. This allows children to practise the new skill with physical resources, before moving on to representing it visually and then with mathematical symbols.

Example: I have four teddies and you have three. How many do we have altogether?

Concrete
Children count the concrete resources.

Pictorial
 Children draw and count the pictures.

Abstract
Children represent the problem formally.

$$
4+3=7
$$

This example is a simple one, but the same principles can be applied to much more advanced mathematical concepts.

Although we use a wide range of concrete resources at Talbot, we have found that counting apparatus, Dienes blocks and place value counters are particularly effective for teaching calculation. Some key visual aids that we use are the number line and the hundred square.

Counting Apparatus

Dienes Blocks

Place Value Counters

Fluency, Reasoning and Problem Solving

The 2014 National Curriculum specifies that all children should be fluent in the fundamentals of mathematics, be able to reason mathematically and be able to solve problems by applying their knowledge. In mathematics lessons at Talbot, fluency, reasoning and problem solving are all developed alongside each other. This calculation policy focuses on developing children's fluency.

Fluency can be defined as the ability to recall and apply knowledge rapidly and accurately, which is underpinned by conceptual understanding. This is supported by the confident use of mental methods. Children at Talbot are taught a variety of mental methods, some supported by jottings, before moving on to learning the formal written methods.

When approaching a calculation question, children should:

- First ask themselves whether a mental method would be appropriate.
- Use estimation to judge whether their answers are reasonable.
- Check their answers using an appropriate strategy.

Quick Recall

It is extremely important that children memorise certain 'number facts' and can recall these without hesitation. This quick recall supports all other areas of mathematics, as it allows children to work flexibly when presented with unfamiliar problems and reduces cognitive load.

We strongly encourage the use of the NumBots and TTRockstars applications at home to help children memorise these facts in a fun and engaging way.

The number facts are taught in this order:

- Number bonds to 10
- Addition and subtraction facts within 10
- Number bonds to 20
- Addition and subtraction facts within 20
- Doubles and halves within 20
- 2,5 and 10 times tables
- Know what must be added to any two-digit number to make 100
- 3, 4 and 8 times tables
- $6,7,9,11$ and 12 times tables
- Prime numbers to 20
- Square numbers up to 12^{2}
- Cube numbers up to 5^{3}

Counting and Early Number

In the Early Years Foundation Stage (Reception) children are taught key number concepts that support later calculation.

The one-one principle

Children match one 'counting word' with each object in a set to be counted. They say one number word, and only one number word, for each object being counted. Children often use touch-counting and may want to move objects from one pile to another as they count.

one

two

three four

five

The cardinal principle

Children understand that the purpose of counting is to find out how many items there are altogether. They understand that the last number word that they say is not just a name given to the last item in a set, but that it represents the total number of items.

The order-irrelevance principle Children understand that the total number of items in a set does not change if you count them in a different order. It doesn't matter which item you start on, the total stays the same.

The stable-order principle Children learn to say the counting words in the same order every time. Children learn the order of numbers through songs, rhymes and stories.

One, two, three, four five, Once I caught a fish alive, Six, seven, eight, nine, ten,

Then I let it go again.

The abstract principle

Children understand that counting can be applied to any set, not just physical objects. They start to count items that they can't see or touch, but can hear or imagine, for example counting hops or claps.

1, 2 beats of the drum

1, 2 bounces
of the ball

Subitising

Children recognise the number of objects in a set without using counting. Children start to recognise numbers of fingers, numbers on a dice, or Numicon without needing to actually count.

When these principles are secure, children start to perform early calculations such as:

- Counting more than one set of objects
- Taking a number of objects out of a set
- Finding one more and one less than a given number
- Counting in twos

Progression in Addition

Introduced in the Early Years Foundation Stage

Count on in steps of one and find one more than a given number

'One more than three is four'

Part-whole

This model should be used to develop addition and subtraction alongside each other, so that children begin to see the inverse relationship.

Children should begin to understand that addition can be done in any order.

Introduced in Key Stage 1

Regrouping to make ten

'Ten ones is equal to one ten'
This is a key concept that supports formal column addition later on.

Make ten or Bridging

Partition the smaller number to bridge through the nearest ten.

$7+5=12$八 32

Count on in tens from any number

In later years, this is extended to counting on in hundreds or thousands from any number, and for counting on in steps of 0.1 for decimal numbers.

Partition the smaller number to count on in tens and ones

This strategy can be combined with the bridging strategy to add 3 in steps of 2 and 1.
In later years, this strategy is extended to partitioning 3-digit numbers.

Introduced in Key Stage 2

Near doubles

When children are confident with doubling, this can be used for quick mental calculation.

' 7 add 8 is the same as double 7 and 1 more'

In later years, this is extended to use with larger numbers and with decimals.
$150+160$ = double $150+10$
$2.5+2.6$ = double $2.5+0.1$

Compensation

When adding a number that is close to a multiple of ten, children add the multiple of ten and then adjust the answer accordingly.

'To add 9 we can add 10 then subtract 1'

' $45+29$ is the same as $45+30$, take away 1 ' In later years, this is extended to numbers close to multiples of 100 (e.g. 99).

Key Vocabulary for Addition

For combining two groups
How much altogether?
How many altogether?
Total
Sum

For counting on from a starting point
Start at and count on
Increase by
Go up by

Introduced in Key Stage 1
Find the difference
Used to compare two groups of objects.

'The difference between nine and five is four'

Understanding subtraction as difference is a key concept which supports calculation with negative numbers later on.

Count on to find the difference

Children should start to realise that counting on is more efficient than counting back when finding the difference between two numbers that are close together.

Subtract single-digit numbers from two-digit numbers, often bridging through 10

$$
15-7=8
$$

Count back in tens from any number

In later years, this is extended to counting back in hundreds or thousands from any number, and for counting back in steps of 0.1 for decimal numbers.

Partition the number being subtracted to count back in tens and ones
$71-23=48$
八 203

This strategy can be combined with the bridging strategy to subtract 3 in steps of 1 and 2. In later years, this strategy is extended to partitioning 3-digit numbers.

'If five take away three equals two, then fifty take away thirty equals twenty'.
In later years this strategy is extended to use with hundreds and thousands.

Partition to subtract
(no exchanging)
38-13

Tens	Ones
$30-10=20$	$8-3=5$

Answer: 25

Partition to subtract (with exchanging)

The key learning point is that because you cannot subtract 5 from 3, you must use one of the tens and exchange it for ten ones.

Introduced in Key Stage 2

Compensation

When subtracting a number that is close to a multiple of ten, children subtract the multiple of ten and then adjust the answer accordingly.

'To subtract 9 we can subtract 10 then add 1 '
'75-29 is the same as $75-30$, add 1'

In later years, this is extended to numbers close to multiples of 100 (e.g. 99).

Key Vocabulary for Subtraction

For taking away from a group
Take away
How much left?
How many left?
How many are not...?

For counting back from a starting point Start at and count back Reduce Decrease Go down

For finding the difference
Difference
How many more?
How many fewer?
How much bigger?
How much smaller?

Progression in Multiplication

Introduced in the Early Years Foundation Stage

Doubling

'Double four is eight'

'Double 7 is 14

Children initially use counting to double, before memorising doubles up to 20.
In later years, children learn to double any two-digit number using partitioning.
Introduced in Key Stage 1
Count in steps of 2,5 and 10

'Two, four, six, eight, ten'

1	2	3	4	5	6	7	8	9	10

5
10
15
20
25

$10,20,30,40,50,60,70,80,90,100$

Children learn that numbers that are divisible by 2 are even, and other numbers are odd. In later years, children learn to count in steps of all numbers up to 12.

Repeated addition

Children make equal groups and count the total. They associate this with repeated addition.

$2+2+2=6$
'3 groups of 2 equals 6'
$5+5+5=15$
'3 groups of 5 equals 15'

Represent multiplication as an array

Children use step counting rather than counting each item individually.

Multiplication can be done in any order
'2 jumps of 4 is the same as 4 jumps of 2' '3 rows of 5 is the same as 5 rows of 3 '

Use known facts to deduce others

5	5	5

'If $3 \times 5=15$ then $3 \times 50=150 '$

50	50	50

Introduced in Key Stage 2

Numbers can be partitioned, multiplied, then recombined
Children partition numbers they are familiar with and see that the answer stays the same.

This is a key concept that children need in order to understand formal column multiplication.

Multiply by 10

Children learn that when multiplying by 10, the place value of each digit increases.

Hundreds	Tens	Ones
	2	3
2	3	0
$23 \times 10=30$		

It is important that children do not associate this with 'adding a zero' as this will not work when they start using decimal numbers.

Key Vocabulary for Multiplication

For repeated addition
Sets of
Lots of
Altogether
Per
Each
Product

For Scaling
Scaling
Doubling
Trebling
So many times bigger/longer/heavier than...
So many times as much as...

Progression in Division

Introduced in the Early Years Foundation Stage

Halving

'Half of eight is four'

Children initially use counting to halve, before memorising halves up to 20.

Introduced in Key Stage 1

Counting back in steps of 2, 5 and 10
'Ten, eight, six, four, two, zero'

'Half of 14 is 7 '

5
10

15

Fair sharing

'If I share six apples fairly between three people, everyone gets two apples each.' $6 \div 3=2$

Grouping
'If I put 6 pencils into groups of 3 , I can make 2 groups.'

$$
6 \div 3=2
$$

Children link this to repeated subtraction.
This is essential for understanding the formal methods of short and long division.

Repeated subtraction

Children subtract in equal steps from a starting number.

'I can subtract 2 from 6 three times'

$15 \div 5=3$
'I can subtract 5 from 15 three times' Children learn that they can also count up to a target number from 0 .

Represent division as an array

12 can be made from 3 groups of 4, or 4 groups of 3 .

Ratio and inverse of multiplication

Amy has twice as many teddies as Bob.
Amy has 8 teddies.
How many does Bob have?

Children link the language of 'so many times less/fewer than' with division.

Use known facts to deduce others
'If $15 \div 3=5$ then $150 \div 3=50$ '

5	5	5
50	50	50

Introduced in Key Stage 2

Divide by 10
Children learn that when dividing by 10, the place value of each digit decreases.

$$
30 \div 10=3
$$

'I can make 3 groups of 10 '

$$
230 \div 10=23
$$

It is important that children do not associate this with 'removing a zero' as this will not work when they start using decimal numbers.

Partition to halve

Half of $64=32$
ハ
604

Half of $60=30$
Half of $4=2$

Divide by 4 by halving and halving again

Half of 12 is 6 . Half of 6 is 3 .

Partition $\begin{aligned} & 936 \div 3 \\ & 936 \\ & / 11 \\ & 900306 \end{aligned}$	o divide $=312$ $\begin{gathered} 900 \div 3=300 \\ 30 \div 3=10 \\ 6 \div 3=2 \end{gathered}$	Fac $\begin{array}{r} 144 \div 24 \\ \text { ハ } \\ 12 \times 2 \\ 144 \div 12=12 \\ 12 \div 2=6 \end{array}$	orisation 'I know that 2 and 12 are a factor pair of 24 so I can divide by 12 and then by 2^{\prime}
Children subtract familiar 'chunks' from the starting number until they reach zero.			
Hundreds Children When they progress	Short division support Tens tart with numbers wh to numbers where th for ten ones, wh	by place value equip Ones can be grouped with is a ten 'left over' th can then be grouped.	pment $936 \div 3$ Children count the groups of 3 in each column. $\begin{array}{r} \begin{array}{rrr} H & T & O \\ 3 & 1 & 2 \\ \hline & 9 & 3 \end{array} \end{array}$ no remainders. hey learn to exchange this
Short division $\begin{gathered} 1 \begin{array}{c} 134 \\ \cline { 2 - 2 }{ }^{2} 3^{2} 8 \end{array} \end{gathered}$	Short division with remainders $7 \begin{array}{\|c\|} 134 \\ 9^{2} 3^{2} 9 \end{array}$	Short division with remainders as decimals $5 \begin{gathered} 158 \cdot 2 \\ 7^{2} 9{ }^{4} 1 \cdot{ }^{1} 0 \end{gathered}$	Long division

Key Vocabulary for Division		
For Sharing Shared equally between How much/many each?	For Grouping How many groups? How many sets?	How many times greater/longer/heavier?

National Curriculum Statements for Addition and Subtraction

EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Children count reliably with numbers from 1 to 20, place them in order and say which number is one more or one less than a given number. Using quantities and objects, they add and subtract two singledigit numbers and count on or back to find the answer.	Read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs. Represent and use number bonds and related subtraction facts within 20. Add and subtract onedigit and two-digit numbers to 20 , including zero. Solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7 \text { = } \square-9 .$	Solve problems with addition and subtraction: - using concrete objects and pictorial representations, including those involving numbers, quantities and measures - applying their increasing knowledge of mental and written methods. Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 . Add and subtract numbers using concrete objects, pictorial representations, and mentally, including: - a two-digit number and ones - a two-digit number and tens - two two-digit numbers - adding three one-digit numbers. Show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot. Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.	Add and subtract numbers mentally, including: - a three-digit number and ones - a three-digit number and tens - a three-digit number and hundreds. Add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction. Estimate the answer to a calculation and use inverse operations to check answers. Solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction.	Add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate. Estimate and use inverse operations to check answers to a calculation Solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why.	Add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction). Add and subtract numbers mentally with increasingly large numbers. Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy. Solve addition and subtraction multistep problems in contexts, deciding which operations and methods to use and why.	Perform mental calculations, including with mixed operations and large numbers. Use their knowledge of the order of operations to carry out calculations involving the four operations. Solve addition and subtraction multistep problems in contexts, deciding which operations and methods to use and why. Solve problems involving addition, subtraction, multiplication and division. Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy.

National Curriculum Statements for Multiplication and Division

EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
They solve problems, including doubling, halving and sharing.	Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.	Recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers. Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (x), division (\div) and equals $(=)$ signs. Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot. Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.	Recall and use multiplication and division facts for the 3,4 and 8 multiplication tables. Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times onedigit numbers, using mental and progressing to formal written methods. Solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects.	Recall multiplication and division facts for multiplication tables up to 12×12. Use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1; multiplying together three numbers. Recognise and use factor pairs and commutativity in mental calculations. Multiply two-digit and three-digit numbers by a one-digit number using formal written layout. Solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects.	Identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers. Know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers. Establish whether a number up to 100 is prime and recall prime numbers up to 19 . Multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers. Multiply and divide numbers mentally drawing upon known facts. Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context. Multiply and divide whole numbers and those involving decimals by 10,100 and 1000 . Recognise and use square numbers and cube numbers, and the notation for squared $\left({ }^{2}\right)$ and cubed $\left({ }^{3}\right)$. Solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes. Solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign. Solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates.	Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication. Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context. Divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context. Perform mental calculations, including with mixed operations and large numbers. Identify common factors, common multiples and prime numbers. Use their knowledge of the order of operations to carry out calculations involving the four operations. Solve problems involving addition, subtraction, multiplication and division. Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy.

